 (acetone- d_{6}) $\delta 9.73(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 8.22,7.98(2 \mathrm{H}$ each, d, $J=$ 8.8, Ar H's), 7.89, 7.40 (2 H each, d, $J=8.3$, Ts H's), 2.39 (3 H , $\mathrm{s}, \mathrm{Ts}-\mathrm{Me}$), $2.32(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$; ${ }^{13} \mathrm{C}$ NMR (acetone- d_{6}) $\delta 149.0(\mathrm{C}=\mathrm{N}$), $144.8,144.5,137.3,129.8,130.3,128.8,128.0,124.2$ (Ar C's), 21.4 (Ts-Me), 13.9 (Me).
Acetophenone (p-Tolylsulfonyl)hydrazone (30) and [α (\boldsymbol{p}-Tolylsulfonyl)ethyl]benzene (31). These two compounds were obtained in 4:1 ratio ($30 / 31$) from acetophenone (p-tolylsulfonyl)hydrazine (26). ${ }^{8}$ They were separated and purified by flash chromatography ($20 \% \mathrm{EtOAc} /$ hexane). The total yield was 90%. Compound 30 (white crystal, $R_{f}=0.64$ developed in 50% EtOAc/hexane): mp $134-136^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.94(2 \mathrm{H}$, $\mathrm{d}, J=8.3$, Ts H's), $7.87(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.85-7.62(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ H 's), $7.36-7.21$ ($5 \mathrm{H}, \mathrm{m}$, Ts and Ar H's), 2.43 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Ts}-\mathrm{Me}$), 2.15 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 152.6(\mathrm{C}=\mathrm{N}), 144.2,137.3,135.4$, $129.6,128.3,128.1,126.3$ (Ar C 's), 21.6 ($\mathrm{Ts}-\mathrm{Me}$), 13.5 (Me); high-resolution FAB-MS calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$ 289.1011, found 289.1002. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 62.48$; H, 5.59; N, 5.09; S, 11.12. Found: C, 62.55; H, 5.67 ; N, 5.05 ; S, 11.19. Compound 31 (pale yellow solid, $R_{f}=0.78$ developed in $50 \% \mathrm{EtOAc} /$ hexane $):{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.40(2 \mathrm{H}, \mathrm{d}, J=8.3$, Ts H's), $7.27-7.10$ ($7 \mathrm{H}, \mathrm{m}, \mathrm{Ar} \mathrm{H}$'s), 4.20 ($1 \mathrm{H}, \mathrm{q}, J=7.2, \mathrm{CHS}$), $2.38(3 \mathrm{H}, \mathrm{s}, \mathrm{Ts}-\mathrm{Me}), 1.74(3 \mathrm{H}, \mathrm{d}, J=7.2, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 144.5,142.0,134.0-127.7$ (Ar C's), 66.1 (C-S), 21.6 (Ts-Me), 14.1 (Me); high-resolution FAB-MS calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$ 261.0949, found 261.0933. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 68.93$; 68.93 ; H, 6.56; S, 12.27. Found: C, 68.83; H, 6.55; S, 12.34

4'-Methoxyacetophenone (p-Tolylsulfonyl)hydrazone (32) and $1-[\alpha$-(Tolylsulfonyl)ethyl]-4-methoxybenzene (33). These two compounds were obtained in 3:2 ratio (32/33) from 4^{\prime} methoxyacetophenone (p-tolylsulfonyl)hydrazine (27). ${ }^{8}$ They were separated and purified by flash chromatography ($10-20 \%$ Et$\mathrm{OAc} /$ hexane $)$. The total yield was 81%. Compound $32\left(R_{f}=0.57\right.$ developed in 50% EtOAc/hexane): mp $168-170^{\circ} \mathrm{C}$ (lit. mp 169-171 $\left.{ }^{\circ} \mathrm{C}\right) ;{ }^{17}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.91,7.30(2 \mathrm{H}$ each, d, $J=$ 8.3, Ts H's), 7.59, 6.83 (2 H each, d, $J=8.9$, Ar H's), 3.80 (3 H , $\mathrm{s}, \mathrm{OMe}), 2.40(3 \mathrm{H}, \mathrm{s}, \mathrm{Ts}-\mathrm{Me}), 2.10(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 160.8(\mathrm{C}=\mathrm{N}), 152.6,144.1,135.5,129.8,129.6,128.2,127.8,113.7$ (Ar C's), 55.3 (OMe), 21.6 (Ts-Me), 13.3 (Me). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 60.36 ; \mathrm{H}, 5.70 ; \mathrm{N}, 8.80 ; \mathrm{S}, 10.07$. Found: C, 60.30;

[^0] Soc. 1973, 95, 3662.
$\mathrm{H}, 5.77 ; \mathrm{N}, 8.72 ; \mathrm{S}, 10.12$. Compound 33 (yellow solid, $R_{f}=0.73$ developed in 50% EtOAc/hexane): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.41,7.18$ (2 H each, d, $J=8.2$, Ts H's), 7.05, 6.76 (2 H each, d, $J=8.7$, Ar H's), 4.15 ($1 \mathrm{H}, \mathrm{q}, J=7.1, \mathrm{CHS}$), 3.77 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 2.38 (3 $\mathrm{H}, \mathrm{s}, \mathrm{Ts}-\mathrm{Me}), 1.69(3 \mathrm{H}, \mathrm{d}, J=7.1, \mathrm{Me})$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 159.9$, 144.4, 134.0, 130.6, 129.3, 129.2, 125.7, 113.8 (Ar C's), 65.4 (C-S), 55.3 (OMe), 21.6 ($\mathrm{Ts}-\mathrm{Me}$), 14.2 (Me); high-resolution FAB-MS calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$291.1055, found 291.1046. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 66.18 ; \mathrm{H}, 6.25 ; \mathrm{S}, 11.04$. Found: C, 66.11 ; H, 6.31; S, 11.09 .

1 -[α-(Tolylsulfonyl)ethyl]-4-aminobenzene (34) and 1-(α -iodoethyl)-4-aminobenzene (35). These two compounds were obtained in 4:1 ratio (34/35) from 4'-aminoacetphenone (p tolylsulfonyl)hydrazine (28). ${ }^{8}$ They were separated and purified by flash chromatography (30% ether/hexane) followed by preparative TLC (50% ether/hexane). The total yield was 56%. Compound 34 ($R_{f}=0.58$ developed in ether): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.43,7.18$ (2 H each, d, $J=8.3$, Ts H's), 6.90, 6.53 (2 H each, d, $J=8.5$, Ar H's), $4.10(1 \mathrm{H}, \mathrm{q}, J=7.2, \mathrm{CHS}), 3.69(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, NH), $2.39(3 \mathrm{H}, \mathrm{s}, \mathrm{Ts}-\mathrm{Me}$), 1.68 ($3 \mathrm{H}, \mathrm{d}, J=7.2, \mathrm{Me}$); high-resolution FAB-MS calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 276.1058$, found 276.1046. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}$: C, $65.43 ; \mathrm{H}, 6.22 ; \mathrm{N}, 5.09$; S, 11.64. Found: C, 65.35 ; H, 6.29 ; N, $5.15 ; \mathrm{S}, 11.52$. Compound $35\left(R_{f}=0.87\right.$ developed in ether): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.89,6.26$ (2 H each, d, $J=8.5$, Ar H's), 4.29 ($1 \mathrm{H}, \mathrm{q}, J=6.7, \mathrm{CH}$), 1.38 ($3 \mathrm{H}, \mathrm{d}, J=6.7$, Me); high-resolution FAB-MS calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NI}$ $(\mathrm{M}+\mathrm{H})^{+} 247.9938$, found 247.9928 .

Acknowledgment. This work is supported by National Institutes of Health Grant GM 35906. H.W.L. also thanks the Camille \& Henry Dreyfus Foundation for a grant awarded to Distinguished New Faculty in Chemistry and the American Cancer Society for a Junior Faculty Research Award. O.H. is a recipient of a Chemistry Department Fellowship.

Registry No. galacto-1, 122948-60-1; gluco-1, 122948-75-8; 2 , 4049-59-6; 3, 122948-61-2; 4, 113668-66-9; 5, 113668-65-8; 6, 122948-62-3; 7, 122948-63-4; 8, 122948-64-5; 9, 122948-65-6; 10, 122948-66-7; 11, 122948-67-8; 21, 1146-49-2; 22, 91011-12-0; 23, 67963-06-8; 24, 51751-71-4; 25, 122948-68-9; 26, 60565-67-5; 27, 122948-69-0; 28, 122948-70-3; 29, 41780-82-9; 30, 4545-21-5; 31, 24422-77-3; 32, 32117-52-5; 33, 122948-71-4; 34, 122948-72-5; 35, 122948-73-6; 36, 56750-58-4; 37, 67381-20-8; 38, 122948-74-7; N-iodosuccinimide, 516-12-1; tosylhydrazine, 1576-35-8.

Additions and Corrections

Vol. 54, 1989

Harry H. Wasserman,* Vincent M. Rotello, David R. Williams, and John W. Benbow. Synthesis of the "Tricarbonyl" Region of FK-506 through an Amidophosphorane.

Page 2785, column 1. Reference 9 was inadvertantly omitted during make-up of the printed version:
(9) Our use of BSA represents a modification of a procedure reported earlier: Cooke, M.; Burman, P. J. Org. Chem. 1982, 47, 4955. Cooke, M. J. Org. Chem. 1982, 47, 4963. In the coupling of ylide 3 with acid chloride 4 (outlined in Scheme II) the reaction failed to give the desired keto ylide carboxylate 5 in the absence of BSA.

[^0]: (17) Hutchins, R. O.; Milewski, C. A.; Maryanoff, B. E. J. Am. Chem.

